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the section F, = i (E = boz) for different heating times v. have been constructed for a 

steel half-space by means of (4.4). (4.5). 
It is seen from Fig. 1 that the maximum stress diminishes rapidly as ‘60 increases, and 

for z. = 2 this maximum is around 43% of its value at ~~ = 0 (instantaneous heating). 

Thus, the maximum dynamic stress is reduced 57% for a 2sec heating duration. This 

indicates that taking account of the finite velocity of heat propagation, the rise in stress 

due to dynamic effects generally has no practical value. 
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The boundary value problem for the stress rates and rates of change fields in the 

quasi-static motion of a volume V of an elastic-plastic medium [1] consists of 

finding the pairs oij’, Eij’ related by the governing equations of an appropriate 

model; here the cij’ should be statically admissible, i.e. should satisfy theequa- 
tions and boundary conditions 

5&=-xX;‘, * 
"ijnjlSp T Pi (0.1) 

and ~ij’ should be kinematically admissible. i.e. 2e,j’ = vi j + uj i , where 

‘i IS,,, z ‘i, (0.2) 

Here S, and S, are nonintersecting parts of the boundary of the volume V, Xi’, 
pi’, uio’ are specified functions. The question of the existence of a solution of 
this problem reduces to the question of the functional 
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I (Tj’*, Eije3) = 
1 1 

2 ‘,j’ (Siil.*) T,]‘* i--j-- Zij’ (Ekl ‘“) Eij’J - ‘ij**Eij.al CZV (0.3) 

reaching the lower bound in a set of kinematically admissible Eij”. and static- 
ally admissible oij’*. However, its lower bound may not be reached if in the mi- 
nimization we limit ourselves only to smooth fields. 

It is proposed to augment the set of admissible fields qii’“, Eij” by closing 
them in the norm Lo (for vie this corresponds to closure in the norm II’). 
Some properties of the functional ~(oij’*, eij’ ) are considered in the augmented 
set of admissible fields. It is shown that the equivalence of the two problems is 
conserved, where I (nij’*, eijao) can be minimized in qi,;‘*, Eij” or in (SLY’*, Cij”. 

The lower bound is reached in each of three cases, at a single point, From the 
fact that 2~i” belongs to the Sobolev space I17-rc1’, there results the absence of sur- 
faces of velocity discontinuity. 

Variational principles have been used in plasticity theory to construct models 
[2] and to investigate the existence and properties of solutions [ 1 , 31. 

1. Let us consider a set of kinematically admissible fields I’~ and statistically ad- 

missible fields o’*. We select some particular velocity field zp satisfying (0.2) and a 
particular solution sP of the system (0.1) (the solution of the Iinear elasticity theory 

problem obtained upon appending Hooke’s law to (0.1) can be taken as the latter, for 

example). 
let I;,” be the space of differentiable velocity fields v,’ satisfying the homogeneous 

boundary condition (0.2), I?,” the space of corresponding fields (ccc) ij ~. 1/ a / ( r$.‘) ij + 
(cc‘)jil; SC* the space of differentiable statically admissible fields s corresponding 

to the homogeneous system (0.1). Evidently o’* CZ SC* + sP and a” tz EC0 + ep 
are statically and kinematically admissible, respectively. 

The functional (0.3) with a lower bound in the set (8,” j- sP) (E,” + e],) Cl] may 
not reach its lower bound on it. In order to assure achievement of the lower bound ofthe 

functional (0.3). let us augment this set as follows. Let S* and E” be the closure of 

SC* and E,” in L, ( V), respectively , where L, = L, (V) is understood to be the space 
of sets of the functions 2/ .= {yij (,c)} and ?/ii = ?Jji, defined in v with summable 

?/ii yji l The scalar product 

(!/7 4Lr = !, (5 4 dV, (!/, 2) =: yi.; C-4 zij (4 

is defined in Ls . It is assumed that the domain v occupied by the medium is bounded. 

Let us take E” f ep = D” and S* + sP = 2 *, respectively. as the sets of kine- 

matically admissible strain rates and statically admissible fields of the stress rates. The 

sets D”, Z* are independent of the selection of the particular solutions ep, SP since 

eP1 - ep2 E ,?:” and sPl - sPs E s*. 
The closure of EC0 in the norm L, is equivalent to the closure of I/,” in the norm 

11 ZJ lb* := 1 [x (vi,j)' -t 2 (ui)z.! dV (1.1) 
V i,j i 

Let r denote such a closure, According to (1. l), if some sequence ( uco), converges to 
V” in Ii’ , then the corresponding sequence (eco)n converges to e” in L?. 
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Conversely, any e0 E E” is a strain rate field of some field V’ E VP. In fact, let 

(e& - e ’ in &. Then from the application of the known inequalities [4, 51 

sr, ViZdV < ci 1 X(Vi,j)” av (1.2) 
V i V i,j 

S 2 (vi,j)2 dV -S c2 S Cvi,j + Vj,i) (Vi,j + V&i) dV 
V i,j V 

to the field (v,‘). - (u,‘)~ which vanishes on s,, it follows that the sequence (z’~)“,, 

is fundamental in the complete space H1 with the norm (1.1). If (D,‘), + z,+’ in Hi, 

then 8 as the limit of (e,‘). coincides with the strain rate field corresponding to 2’” by 

virtue of (1.1). 
The inequalities (1.2) are satisfied if the domain V is bounded by a piecewise-con- 

tinuous differentiable surface without cusps. Henceforth, this condition will be assumed 
satisfied. Moreover, it is assumed that either s, is a part of this surface with positive 

measure, or the whole boundary of V is 8, and then the admissible velocity fields 
should satisfy additional conditions [4, 61 which exclude the displacement of the medium 

as a solid body 

s VdV = 0, s rot VdV - 0 
V V 

The inequalities (1.2) then remain valid. 
bet us show that L, decomposes into the direct sum L, = 2pE” f S* (p is a 

dimensional constant). If yc E L, is a set of differentiable functions, then 

yc =2yez2 + sC*, eC3 E E,“, s,* E s,*. 

Here 2 (ecO);,f = ~i,j f Uj, i and the ai are found [S, 61 from the system of linear 

elasticity theory equations 

P tUi,j + Uj,i),j = (Yc)ij,j 

ui Is, = 0, P (ni,j + Uj,i) nj ISp = (Yc)ij nj 

For sufficiently smooth yc the ui [6] are also smooth, consequently,&* = yc - zpe,“. 

Evidently s,* = ye - 2pe,” satisfies the homogeneous system (0. l), and therefore 

s,* E s,*. 
Furthermore, since the differentiable yc are everywhere compact in L, , and Ei” is 

orthogonal to SC*, and the subspaces E” 3 E,“, S” Zl S,” are closed in the complete 

space L,, then for any y E L, ~ y = 2pe” + s*, e” E E”, si E S*. The sub- 
spaces E” and s* are orthogonal since the sets E,“, S* which are everywhere com- 
pact and are contained therein are orthogonal. Hence 

L, --. 2pE” + S*, E” .J_ S” 

The field E’~ (o’*) is kinematically (statically) admissible if and only if E” - 

eP (Cl'* - sp) is orthogonal to the subspace S* (E’). 
Let us consider the pair o’” E I: *, caLI E D” connected by the relationship p] 

E’ (0’) = As’ + Cl (f) c2 [(f’, a’)] h (f’, 0’) f' (1.3) 

Cl (4 = 
1 

1, x=0 
0, s#O’ 

c2 (z) = 
1 

1, J:>o 
0, z\<o 
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in the case of a hardening elastic-plastic medium, the solution of the problem to see the 
stress velocity and rate of change fields. Here f’ denotes the tensor af / ao,, , the sca- 
lar product is the convolution of the corresponding tensors, A is an operator correspond- 

ing to a positive-definite quadratic form of the elastic energy 1/Z (o, Ao); f (o, x)- 0 

is the equation of the loading surface, x is the hardening parameter, and h. is a known 
function of o, X, EP. 

Let us find the inversion of (1.3) explicitly. If c1 (f) :- 0, then IS’ (a’) := ~l-la’. If 

ci (f) = 1, then one of two cases 

or 

3’ (&‘) .T zl’ (&‘) --: /l-l&‘, (/', 51')< 0 (1.4) 

3’ (a’) r= Q’ (e’) = (A + hF)_l E’, (f’, 52') > 0 

> 
(1.5) 

should be realized. By multiplication it can be seen that 

(A + hj’)-l E A-’ -i~~/i-~F/l-‘, h, = h [I + h (f’, A-If’)]-l (1.6) 

We note that the signs of (f’, ai’) and (f’, a,‘) agree. Hence, (1.4), (1.5) can be 

combined into an expression analogous to (1.3) 

o. (8’) L= A-l e’ - cl (f) c2 l(g, e’)l h,.(g, E’) g, g = A-‘)’ (1.7) 

let us examine some properties of the functional (0.3). We assume that the 

oiYixl~ &ij (5)~ X (x) g iven in the domain V are such that h (z)* f’ (x) areboun- 

ded functions measurable in V . Then as is seen from (1.3), (1.7), from o’* E I,, and 

a” E L, there follows a’ (o**) E L, and o’ (E”) e L, , respectively. Thus, the 
functional (0.3) is defined on z * x Do and can, taking account of (1.3) (1.7), be 

represented as 
I (a’*, E’“) = I1 (5’*) + I2 (E’“) - (5.4, E’“)L2 (2.1) 

I1 (a’*) = -+ $ (d ‘*, As’*) dV + + a ’ hc, [(f’, s’*)] (f’, s’*)~ dV (2.2) 
V VP 

I2 (E’“) = +- $ (E-0, A-18’“) dV - f s hlC, [(g, q] (g, E-o)2 dV (2.3) 
7 

Here VP C V is the set of points at which ci (f) 5 1, i. e. the stresses reach the yield 
point. We show that the functional (2.1) is continuous. For example, let us consider 
I, (o’*), the first term in (2.2) can be easily estimated 

1s (Gl’*, As;*) dV - s (5;*, A62’*) dV ( < 1 A 1 s IQ;” + ai* 11 x 
V V V (2.4) 

11 51’* - 62’ * 1 dV < 1 A III%‘* + a2’* /I I/ al’* - o2’* II 

To estimate the second term in (2.2) 

a= IS hc, [(I’, %‘*)I (f’, ~1’“)~ &’ - s hc, [(f’, a,‘*)] (f’, ai*) dv 1 
VP VP 

we separate three parts in VP 

VI2 = {5 E v, :(f',Q'*)>o, (7, G'*)>ol 

v, = {z E vp: (I', sl.*)>O, (f', 52'*)< 0) 

v2 = {z E vp :(f',o,'*)< 0, (f',o2'*)>0, 
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Then 

5 h (f’, al’*)” dV + 1 h (f’, 52’*y dV < 
Vi V2 

IS h (f’, Q1’” - s2’*) (f’, $‘* + e2’*) dV 1 + 
VU 

s h (f’, aI’* - 62 .*y dV + 1 h (f’, oz.* - al’*)” (Ev 
VI Vl 

and further analogously to (2.4). 
Thus, the functional I, (cr.*) is continuous, and the continuity of 1, (a’“) is proved 

analogously, The last term in (2.1) is continuous by virtue of the continuity of the sca- 
lar product, and therefore, Fhe functional 1 (a’*, 6”) is continuous. 

The values of the functional 1 (IS’*, a’“) satisfy the inequality 

I (cr.‘*, E’O) > 0 (2.5) 

for o’* E S,” + sp, E” E EC0 f ep [l]. Since the sets SC* + s,,, E,” ,i- ep 
are compact everywhere in Z * , Do , respectively, and the functional 1 (o’*, e-9 is 

continuous, the inequality (2.5) also holds for any o’* E 2 *, e*’ E Do. 

It can be shown that the functional (2.1) is strictly convex, i.e. 

I (asi’* + p5s**, aai” + PEG”) <al (5i’*, ai”) + PI (%‘*, E2”) 

o<~<_I, a+@= 1, c~~‘*,~~‘*Ez*, E~‘~,E~“‘ED~ 

(2.6) 

The functional I, (a’*) is strictly convex since the first integrand in (2.2) is a positive- 

definite quadratic form, and the second one is 

rp (a’*) = hc, l(f’, a’*)1 (f’, .‘*)z = hi/, [ 1 (f’, o’*) ) + (f’, o’*)l (f’, o’*) 

is a convex function. 

Furthermore. let us represent the functional (2.3) as 

212 (E-7 = 1 (E’O, kl&“) di’ j- \ (E”, BE”) iEl’ f \ hlCz [(- g, E”)] (&‘, E’“)‘dV 

nVP VP VP 

where it has been taken into account that 

and the form 

1 - c2 [(g, E’)l = cp [(6-g, a’)1 

(E’, BE’) = (E’, klE’) - hl (g, &‘)2 = [ 1 + h (f’, ii-l{‘)]-’ x 

[(E’, .4-‘E’) + h (E’, k-lE*) (f’, /i-l/‘) - h (E’, ik-lf’)z] 

is denoted in terms of B The form B is positive-definite, hence, we find as above that 
II (a”) is a strictly convex functional. 

Finally, for the last term in (2.1) we have 

- (%sl’* f 3%‘*, UEl” + $Ez”)~~ f CY (al’*, E1’“)IJ2 + P (3~‘*~ E2’“)~dz’= 

r$ (sL’* -cQ’*, &I*’ - Ez’“)L~ = 0 

since ul’* - cr:‘* and a!” - Ed” belong to orthogonal subspaces. Thus, the functional 
(2.1) is strictly convex. 
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Each element o’* E 2 * and a” E D” can be represented as o’* = s* + sp, 
.O & = e” -I- ep, s* E S*, e” E E”. Hence, the functional (2.1) can be represented 

as the functional 
I (s*, e”) = I (cr.*, E’“) 

defined in the linear space S* x E”. 

The functional T,(s*, e”) has a Gtteaux linear differential 
. 

Df(s*, e”; H, 7) = lim ; [?(s” + tH , e” + tq) -- T(s*, e’)] = (2.7) 
t* 

lime 
s t4 2t VP 

‘rz {ca r(f’ , s* + s + tH)j (f’, s* + s + M)” - 

c2 [(f’, s* + $1 V’, s* + s)a} dV - lim 1 1 
t_y) At I/p 

hr (c2 [(g, e’ + e, + 

WI (67, e” + ep + 4)’ - c2 [(g, e” + +)I (g, e” -I- e2> dV + 

s l I@* + sp, ,4ff) + (e” + ep, A?) - (s* + sp, q) - (e” + e,, H)] dV 

!Hve S*, q E E”) 

We represent the first term in (2.7) as 

iI = lim1 [ 5 h(/‘, 5” + tH)2 - 
tAo 2t V+(t) 

\ h (f’, G**)~ dV + 

vm . 
I h {(f’, G’* + tN)2 - (f’, o’*)~} dv 

v+ (0 
v* (t) = {z E VP : (f’, G’* + tH) > 0, (f’, a’*> < 0) 
VT (t) = (32 E VP : (f’, CT’* + tH) < 0, (f’, a’*) > 01 
V+(t) = {a: ei VP : (I’, Y* + tH) > 0, (f’, a’*) > 01 

The inequalities 

a ( (f’, ct.* + tH) < t (f’, H), 0 < (f’, o**> < - r (f’, 11) 

are respectively valid at the points I/* and VT , and the function if’, II)? is summa- 
ble in the domain V, hence i _ li1;3 

1- 
s 

h (f', a'*) (f’, H) dV 
tdo V+(t) 

We show that for arbitrary E > 0 , and sufficiently small 1 t 1 

mes [U+ \ V+ (2)) < E 
u+ = {x E v, : (f’, a’“) > O}, v+ (t) c_ u+ 

(2.8) 

In fact, by virtue of the boundedness of V there is a a > 0 such that 

mesU,+<El2, u,+ = {z E v, : a > (f’, 5’*) > 0) 
Let us consider the set 

Q (t) = (U’ ‘k U,‘) \ V+ (t) = 

{x E VP : (f’, o’*) > u, (f’, IS’* + tH) < 0) 

(2.9) 
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The inequality 
a < (f’, o.‘*j 

is valid in this set, and therefore 

of stress rates In a hardening medium 
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Q (t) c_ {x Ez u+ : 1 (f’, H) 1 > fi} c { 5 E u+ : I (f’, q I > (2.10) 

+ I f MaI6 ( I t I < 6) 

The function I (f’, H) 1 is summable in the domain V, hence there exists a 6 > 0 

such that mes M,,, < e / 2. Then we find from (2.9) and (2.10) that the inequality 

(2.8) holds for 1 t 1 < 6 , and consequently, 

iI = 1 h(f', $'*)(f', H)dV = 1 hC2 [(f',G'")l (f',o'*>(f', H)dV (2.11) 

Uf VP 

The second term in (2.7) can analogously be converted into 

- s &a [(g, E’O)l (g, E-7 (g, rl) dV (2.12) 
VP 

Substituting (2. ll), (2.12) into (2.7), we finally obtain 

Df(s*, e”; H, q) = \ [(E’ (a’*) - E”, H) + (5’(a’“) - Q**, rl)l CEV (2.13) 
G 

This calculation has been carried out in [l] under the assumption of differentiability of 

o**, &‘O . 
Finally, let us show that the functional T (a*, e”) is growing, i. e. 

for IIs* II + lIeoIl-+ w. 
T (s*, e) -_, cx) 

In fact,discarding the second member in 1r and integrating 

over the whole domain V in the second member of I, , we obtain 

f(s*, e”) >‘/~(a*, A~*)L~ + '/2(eo1 Beoh + 

'/2(sP -4)~~ + '/2(ep7 J&h, - (eo7 GL~ - (s*, ep)Lp - 

(spy ep)LI + (s*, Asp>h f (e', &h, 

The forms (s*, As*) and (e’, Be”) in the first two members are positive definite, and 
the remaining terms are linear in s*, e” (s, and ep are fixed), hence T(s * , e”) is in- 
creasing. 

Thus, the functional 7 (s*, e’), defined in the Hilbert space S* x E” c L, x L, 
is continuous therein, strictly convex, increasing, and has a linear Gateaux differential 

Df(s*, e’; H, q) = (6’ (5’*) - E”, H)L~ + (3’ (E’“) - 5’*, V>L, (2.14) 

(0 ‘* = s* + sP, a” = e0 + ep) 

3. There results from the listed properties of the functional 7 (s*, e“) [8] that 

( a) For every fixed e” from E” there exists an element of the space S* - 
s** le”] on which the lower bound is achieved 

qs** [e”], e’) = inf f(s*, e’) = inf I (5’*, E”) = ml (E’“) (3.1) 
s%zs* o’*En* 

(b) For every fixed s* from S* there exists an element of the space E” - 
e” ’ [s*J on which the lower bound is achieved 

ir(s*, e” O [s*j) =,inf.Z (s*, e’) =,_k1&1 (s’*, 8’“) = m2 (s’*) (3.2) 
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( c) There exists an element of the space S* ,< E” - (s,*, F,,“) on which 
the lower bound is achieved 

In each of the three cases the lower bound is achieved at a single point. 
For a G”ateaux differentiable convex functional, the necessary and sufficient condition 

for reaching the lower bound is that its differential vanishes. Hence,we find from (2.14) 

in the case ( a ) (q = 0) 
(&'(5'**) - E'O, N)& _- 0 

for any H from S*, and, consequently, e’ (o’** ) is a kinematically admissible 
field. The pair cr.**, a’ (o’**) is a solution of the elastic-plastic problem. Conver- 

sely if a kinematically admissible field E’ (cr.*) corresponds to the field o’* from Z *, 

i.e. o’*, a’ (a’*) is a solution, then 

E’ (a’*) E D’, r’ (a’*) - E’O E E”, (6’ (s’*) - E’O, H)LI = 0 

and m, (E”) is achieved on o’* . 
Analogous assertions hold in case (b) as well. Finally, it is evident in case ( c) that 

o;*, E,‘O is a solution of the elastic-plastic problem and, conversely, the solution rea- 
ches the minimum of the functional I (o-m, E”). There hence results that it is unique. 

Consequently, m, (8”) is reached for any a’” on the same element o-8 * from 2 *, 

and m2 (a’*) for any o’* on the same aeCa from D”. Moreover 

& So zzz e -00 = E’ (3’**), a** = $** = 5’ ( &‘OO) 

Thus, if finding the pair ct.* E 2 *, E’O E D ’ connected by the relationships (1.3). 

(1.7) is understood to be the solution of the problem of determining the stress velocity 

and rate of charge fields in an elastic-plastic medium, the following assertion has been 

proved. 
If a domain V bounded by a piecewise-continuous differentiable surface without cusps 

is filled with a hardening elastic-plastic medium, then for a given distribution ‘Sij (,z), 

.$’ (x), x(x) such that h and fij’ are bounded functions measurable in V , there exists 

a unique solution o,,,‘*, E~‘O. Hence, o,‘* , and correspondingly a,‘* and the pair 
ci;*, Ema0 yields the solution of the problem of minimization (3.1) of the functional 

(0.3) for any E”, (3.2) for any cr ‘* and (3.3). Conversely, the solution of any of these 

problems permits determining u,‘* or E,“. 
As has been shown above, any field E’O E Do is a strain rate field of some velocity 

field v from the space H1 (v>. Thus, the field 2’ has derivatives in the Sobolev sense, 
and consequently, there are no two-dimensional velocity discontinuity surfaces in the 
domain V. The reasoning carried out does not permit exclusion of the presence of sin- 
gularities on manifolds of dimensionality less than two. However, in the case of a one- 
dimensional problem, H1 c C and the velocity field is continuous according to the 

Sobolev embedding theorem [4]. 
The author is grateful to A,G.Kulikovskii for attention to the research and to 1.1. 

Sedov for useful discussions. 
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EFFECT OF INTERCONVBRTIBIIJTY OF ELECTROMAGNETIC AND GRAVITATIONAL 
WAVES IN STRONG EXTERNAL ELECTROMAGNETIC FIBIDS AND THE 

PROPAGATION OF WAVES IN THE FIELD OF A CHARGED "BLACK HOLE" 

PMM Vol. 38, N*6, 1974, pp. 1122-1129 
G. A. ALEKSEEV and N. R. SIBGATULLIN 

(Moscow) 
(Received September 20, 1973) 

It is shown that the behavior of an arbitrary wave propagating in the field of a nonrotat- 

ing charged black hole is defined (with the use of quadratures) by four functions. Each 
of these functions obeys its second order equation of the wave kind. Short electromagne- 
tic waves falling onto a black hole are reflected by its field in the form of gravitational 

and electromagnetic waves whose amplitude was explicitly determined. In the case of 
the wave carrying rays winding around the limit cycle the reflection and transmission 
coefficients were obtained in the form of analytic expressions. 

Various physical processes taking place inside, as well as outside a collapsing star, may 
induce perturbations of the gravitational, electromagnetic and other fields, and lead to 
the appearance in the surrounding space of waves of various kinds which propagate over 
a distorted background and are dissipated along its inhomogeneities. 

In the absence of rotation and charge in a star, the analysis of small perturbations of 
the gravitational fields is based on the system of Einstein equations linearized around the 
Schwarzschild solution. In [ 1, 23 this system of equations, after expansion of perturbations 
in spherical harmonics and Fourier transformation with respect to time, was reduced to 
two independent linear ordinary differential equations of second order of the form of the 
stationary Schrodinger equation for a particle in a potential force field. Each of these 
equations defines one of two possible independent perturbation kinds : “even” and “odd” 


